Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
mBio ; : e0198223, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651925

RESUMO

Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.

3.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503300

RESUMO

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Assuntos
Imunodeficiência Combinada Severa , Lactente , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mutação/genética , Linfócitos T/metabolismo , Mutação de Sentido Incorreto/genética
4.
Lancet Microbe ; 5(3): e247-e260, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280387

RESUMO

BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a severe superinfection with the fungus Aspergillus affecting patients who are critically ill with COVID-19. The pathophysiology and the role of neutrophil extracellular traps (NETs) in this infection are largely unknown. We aimed to characterise the immune profile, with a focus on neutrophils and NET concentrations, of critically ill patients with COVID-19, with or without CAPA. METHODS: We conducted a single-centre, retrospective, observational study in two patient cohorts, both recruited at University Hospitals Leuven, Belgium. We included adults aged 18 years or older who were admitted to the intensive care unit because of COVID-19 between March 31, 2020, and May 18, 2021, and who were included in the previous Contagious trial (NCT04327570). We investigated the immune cellular landscape of CAPA versus COVID-19 only by performing single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid. Bronchoalveolar lavage immune cell fractions were compared between patients with CAPA and patients with COVID-19 only. Additionally, we determined lower respiratory tract NET concentrations using biochemical assays in patients aged 18 years and older who were admitted to the intensive care unit because of severe COVID-19 between March 15, 2020, and Dec 31, 2021, for whom bronchoalveolar lavage was available in the hospital biobank. Bronchoalveolar lavage NET concentrations were compared between patients with CAPA and patients with COVID-19 only and integrated with existing data on immune mediators in bronchoalveolar lavage and 90-day mortality. FINDINGS: We performed scRNA-seq of bronchoalveolar lavage on 43 samples from 39 patients, of whom 36 patients (30 male and six female; 14 with CAPA) were included in downstream analyses. We performed bronchoalveolar lavage NET analyses in 59 patients (46 male and 13 female), of whom 26 had CAPA. By scRNA-seq, patients with CAPA had significantly lower neutrophil fractions than patients with COVID-19 only (16% vs 33%; p=0·0020). The remaining neutrophils in patients with CAPA preferentially followed a hybrid maturation trajectory characterised by expression of genes linked to antigen presentation, with enhanced transcription of antifungal effector pathways. Patients with CAPA also showed depletion of mucosal-associated invariant T cells, reduced T helper 1 and T helper 17 differentiation, and transcriptional defects in specific aspects of antifungal immunity in macrophages and monocytes. We observed increased formation of NETs in patients with CAPA compared with patients with COVID-19 only (DNA complexed with citrullinated histone H3 median 15 898 ng/mL [IQR 4588-86 419] vs 7062 ng/mL [775-14 088]; p=0·042), thereby explaining decreased neutrophil fractions by scRNA-seq. Low bronchoalveolar lavage NET concentrations were associated with increased 90-day mortality in patients with CAPA. INTERPRETATION: Qualitative and quantitative disturbances in monocyte, macrophage, B-cell, and T-cell populations could predispose patients with severe COVID-19 to develop CAPA. Hybrid neutrophils form a specialised response to CAPA, and an adequate neutrophil response to CAPA is a major determinant for survival in these patients. Therefore, measuring bronchoalveolar lavage NETs could have diagnostic and prognostic value in patients with CAPA. Clinicians should be wary of aspergillosis when using immunomodulatory therapy that might inhibit NETosis to treat patients with severe COVID-19. FUNDING: Research Foundation Flanders, KU Leuven, UZ Leuven, VIB, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, la Caixa Foundation, the Flemish Government, and Horizon 2020.


Assuntos
COVID-19 , Armadilhas Extracelulares , Aspergilose Pulmonar , Adulto , Humanos , Feminino , Masculino , Estudos Retrospectivos , Antifúngicos , Estado Terminal , COVID-19/complicações , Sistema Respiratório , Análise de Sequência de RNA
5.
Nat Microbiol ; 9(1): 95-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168615

RESUMO

The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS-STING pathway as determined by induction of interferon-stimulated genes, IFNß production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.


Assuntos
Candidíase , Interferon Tipo I , Animais , Camundongos , Candida albicans/patogenicidade , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Candidíase/metabolismo , Candidíase/patologia
6.
Nat Immunol ; 25(1): 19-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168953

RESUMO

Sepsis remains a major cause of morbidity and mortality in both low- and high-income countries. Antibiotic therapy and supportive care have significantly improved survival following sepsis in the twentieth century, but further progress has been challenging. Immunotherapy trials for sepsis, mainly aimed at suppressing the immune response, from the 1990s and 2000s, have largely failed, in part owing to unresolved patient heterogeneity in the underlying immune disbalance. The past decade has brought the promise to break this blockade through technological developments based on omics-based technologies and systems medicine that can provide a much larger data space to describe in greater detail the immune endotypes in sepsis. Patient stratification opens new avenues towards precision medicine approaches that aim to apply immunotherapies to sepsis, on the basis of precise biomarkers and molecular mechanisms defining specific immune endotypes. This approach has the potential to lead to the establishment of immunotherapy as a successful pillar in the treatment of sepsis for future generations.


Assuntos
Medicina de Precisão , Sepse , Humanos , Sepse/terapia , Imunoterapia , Biomarcadores
7.
J Clin Immunol ; 44(1): 10, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129331

RESUMO

Here, we describe an adult female with severe fasciitis and skin necrosis who carried a private, predicted deleterious missense mutation in OTULIN in heterozygosity. OTULIN is a cellular regulator of deubiquitination that has been shown to play a key role in intrinsic immunity against staphylococcal α-toxin. The patient was treated with broad-spectrum antibiotics, and multiple surgical explorations were conducted without clinical response. Since autoinflammation was the predominant clinical feature, TNF inhibition was started with a good clinical response. We show that excessive inflammation in OTULIN haploinsufficiency can be effectively treated by TNF inhibition.


Assuntos
Fasciite , Haploinsuficiência , Feminino , Humanos , Inflamação/genética , Necrose , Ubiquitinação
8.
Clin Immunol ; 255: 109762, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673225

RESUMO

The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli. BNT162b2 vaccination induced effective humoral and cellular immunity against SARS-CoV-2 that started to wane after six months. We also observed long-term transcriptional changes in immune cells after vaccination. Additionally, vaccination with BNT162b2 modulated innate immune responses as measured by inflammatory cytokine production after stimulation - higher IL-1/IL-6 release and decreased IFN-α production. Altogether, these data expand our knowledge regarding the overall immunological effects of this new class of vaccines and underline the need for additional studies to elucidate their effects on both innate and adaptive immune responses.

9.
J Clin Immunol ; 43(8): 2033-2048, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714974

RESUMO

Both innate errors of immunity, such as familial Mediterranean fever (FMF) and chronic granulomatous disease (CGD), and the common inflammatory disease gout are characterized by episodes of sterile inflammatory attacks in the absence of an infection. While these disorders encompass distinct pathologies due to differentially affected metabolic pathways and inflammasome activation mechanisms, their common features are the excessive production of interleukin (IL)-1ß and innate immune cell hyperreactivity. On the other hand, the role of T cells and innate-like lymphocytes such as gamma delta (γδ) T cells in these pathologies is ill-defined. In order to widen our understanding of T cell involvement in CGD, FMF and gout pathology, we developed multicolour immunophenotyping panels for flow cytometry to characterize γδ T cells as well as CD4 and CD8 T cell populations in terms of their cytokine production, activation status, memory or naive phenotypes, exhaustion status, homing receptor expression, and cytotoxic activity. Our study is the first deep immunophenotyping analysis of T cell populations in CGD, FMF, and gout patients. We found that CGD affects the frequencies and activation status of T cells, while gout impairs the cytokine production capacity of Vδ2 T cells. FMF was characterized by decreased percentages of regulatory T cells in circulation and attenuated IFN-γ production capacity by Vδ2 T cells. Autoinflammatory syndromes and congenital defects of phagocyte differentially affect T cell compartments. Future studies are warranted to assess whether these phenotypical changes are relevant for disease pathology.


Assuntos
Febre Familiar do Mediterrâneo , Gota , Doença Granulomatosa Crônica , Humanos , Doença Granulomatosa Crônica/diagnóstico , Linfócitos T CD8-Positivos , Citocinas
10.
Front Immunol ; 14: 1233318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614228

RESUMO

Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated. Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients. Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed. Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses. Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Citocinas , Leucócitos Mononucleares , Ligantes , Proteômica , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Fator de Necrose Tumoral alfa , Dexametasona/farmacologia , Dexametasona/uso terapêutico
11.
Sci Rep ; 13(1): 11507, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460572

RESUMO

In coronavirus disease 2019 (COVID-19), endothelial cells play a central role and an inadequate response is associated with vascular complications. PET imaging with gallium-68 labelled RGD-peptide (68Ga-RGD) targets αvß3 integrin expression which allows quantification of endothelial activation. In this single-center, prospective observational study, we included ten hospitalized patients with COVID-19 between October 2020 and January 2021. Patients underwent 68Ga-RGD PET/CT followed by iodine mapping of lung parenchyma. CT-based segmentation of lung parenchyma, carotid arteries and myocardium was used to quantify tracer uptake by calculating standardized uptake values (SUV). Five non-COVID-19 patients were used as reference. The study population was 68.5 (IQR 52.0-74.5) years old, with median oxygen need of 3 l/min (IQR 0.9-4.0). 68Ga-RGD uptake quantified as SUV ± SD was increased in lungs (0.99 ± 0.32 vs. 0.45 ± 0.18, p < 0.01) and myocardium (3.44 ± 1.59 vs. 0.65 ± 0.22, p < 0.01) of COVID-19 patients compared to reference but not in the carotid arteries. Iodine maps showed local variations in parenchymal perfusion but no correlation with SUV. In conclusion, using 68Ga-RGD PET/CT in COVID-19 patients admitted with respiratory symptoms, we demonstrated increased endothelial activation in the lung parenchyma and myocardium. Our findings indicate the involvement of increased and localized endothelial cell activation in the cardiopulmonary system in COVID-19 patients.Trail registration: NCT04596943.


Assuntos
COVID-19 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Pessoa de Meia-Idade , Idoso , Radioisótopos de Gálio , Células Endoteliais/metabolismo , COVID-19/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Oligopeptídeos , Integrina alfaVbeta3/metabolismo
12.
EBioMedicine ; 95: 104736, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524002

RESUMO

BACKGROUND: Children with SARS-CoV-2 related Multisystem Inflammatory Syndrome in Children (MIS-C) often present with clinical features that resemble Kawasaki disease (KD). Disease severity in adult COVID-19 is associated to the presence of anti-cytokine autoantibodies (ACAAs) against type I interferons. Similarly, ACAAs may be implicated in KD and MIS-C. Therefore, we explored the immunological response, presence of ACAAs and disease correlates in both disorders. METHODS: Eighteen inflammatory plasma protein levels and seven ACAAs were measured in KD (n = 216) and MIS-C (n = 56) longitudinally by Luminex and/or ELISA. Levels (up to 1 year post-onset) of these proteins were related to clinical data and compared with healthy paediatric controls. FINDINGS: ACAAs were found in both patient groups. The presence of ACAAs lagged behind the inflammatory plasma proteins and peaked in the subacute phase. ACAAs were mostly directed against IFN-γ (>80%) and were partially neutralising at best. KD presented with a higher variety of ACAAs than MIS-C. Increased levels of anti-IL-17A (P = 0·02) and anti-IL-22 (P = 0·01) were inversely associated with ICU admission in MIS-C. Except for CXCL10 in MIS-C (P = 0·002), inflammatory plasma proteins were elevated in both KD and MIS-C. Endothelial angiopoietin-2 levels were associated with coronary artery aneurysms in KD (P = 0·02); and sCD25 (P = 0·009), angiopoietin-2 (P = 0·001), soluble IL-33-receptor (ST2, P = 0·01) and CXCL10 (P = 0·02) with ICU admission in MIS-C. INTERPRETATION: Markers of endothelial activation (E-selectin, angiopoietin-2), and innate and adaptive immune responses (macrophages [CD163, G-CSF], neutrophils [lipocalin-2], and T cells [IFN-γ, CXCL10, IL-6, IL-17]), are upregulated in KD and MIS-C. ACAAs were detected in both diseases and, although only partly neutralising, their transient presence and increased levels in non-ICU patients may suggest a dampening role on inflammation. FUNDING: The Kawasaki study is funded by the Dutch foundation Fonds Kind & Handicap and an anonymous donor. The sponsors had no role in the study design, analysis, or decision for publication.


Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , Adulto , Humanos , Criança , Citocinas , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Angiopoietina-2 , Estudos de Coortes , SARS-CoV-2 , Autoanticorpos
13.
Cell Rep ; 42(6): 112658, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330914

RESUMO

Itaconate is an immunomodulatory metabolite produced by immune cells under microbial stimulation and certain pro-inflammatory conditions and triggers antioxidant and anti-inflammatory responses. We show that dimethyl itaconate, a derivative of itaconate previously linked to suppression of inflammation and widely employed as an alternative to the endogenous metabolite, can induce long-term transcriptional, epigenomic, and metabolic changes, characteristic of trained immunity. Dimethyl itaconate alters glycolytic and mitochondrial energetic metabolism, ultimately leading to increased responsiveness to microbial ligand stimulation. Subsequently, mice treated with dimethyl itaconate present increased survival to infection with Staphylococcus aureus. Additionally, itaconate levels in human plasma correlate with enhanced ex vivo pro-inflammatory cytokine production. Collectively, these findings demonstrate that dimethyl itaconate displays short-term anti-inflammatory characteristics and the capacity to induce long-term trained immunity. This pro-and anti-inflammatory dichotomy of dimethyl itaconate is likely to induce complex immune responses and should be contemplated when considering itaconate derivatives in a therapeutic context.


Assuntos
Imunidade Inata , Macrófagos , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Anti-Inflamatórios/metabolismo
14.
J Clin Immunol ; 43(6): 1104-1117, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37231290

RESUMO

PURPOSE: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective long-term protection against COVID-19 is therefore of great importance in these patients, but little is known about the decay of the immune response after primary vaccination. We studied the immune responses 6 months after two mRNA-1273 COVID-19 vaccines in 473 IEI patients and subsequently the response to a third mRNA COVID-19 vaccine in 50 patients with common variable immunodeficiency (CVID). METHODS: In a prospective multicenter study, 473 IEI patients (including X-linked agammaglobulinemia (XLA) (N = 18), combined immunodeficiency (CID) (N = 22), CVID (N = 203), isolated or undefined antibody deficiencies (N = 204), and phagocyte defects (N = 16)), and 179 controls were included and followed up to 6 months after two doses of the mRNA-1273 COVID-19 vaccine. Additionally, samples were collected from 50 CVID patients who received a third vaccine 6 months after primary vaccination through the national vaccination program. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T cell responses were assessed. RESULTS: At 6 months after vaccination, the geometric mean antibody titers (GMT) declined in both IEI patients and healthy controls, when compared to GMT 28 days after vaccination. The trajectory of this decline did not differ between controls and most IEI cohorts; however, antibody titers in CID, CVID, and isolated antibody deficiency patients more often dropped to below the responder cut-off compared to controls. Specific T cell responses were still detectable in 77% of controls and 68% of IEI patients at 6 months post vaccination. A third mRNA vaccine resulted in an antibody response in only two out of 30 CVID patients that did not seroconvert after two mRNA vaccines. CONCLUSION: A similar decline in IgG titers and T cell responses was observed in patients with IEI when compared to healthy controls 6 months after mRNA-1273 COVID-19 vaccination. The limited beneficial benefit of a third mRNA COVID-19 vaccine in previous non-responder CVID patients implicates that other protective strategies are needed for these vulnerable patients.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Doenças da Imunodeficiência Primária , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Estudos Prospectivos , SARS-CoV-2 , Vacinação , Anticorpos Antivirais , Imunoglobulina G , RNA Mensageiro/genética , Imunidade
15.
JAMA ; 329(14): 1183-1196, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039790

RESUMO

IMPORTANCE: Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective: To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS: In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non-critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS: Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES: The primary outcome was organ support-free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS: On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support-free days among critically ill patients was 10 (-1 to 16) in the ACE inhibitor group (n = 231), 8 (-1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support-free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE: In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Assuntos
Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Tratamento Farmacológico da COVID-19 , COVID-19 , Sistema Renina-Angiotensina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Teorema de Bayes , COVID-19/terapia , Sistema Renina-Angiotensina/efeitos dos fármacos , Hospitalização , Tratamento Farmacológico da COVID-19/métodos , Estado Terminal , Receptores de Quimiocinas/antagonistas & inibidores
16.
J Crit Care ; 76: 154272, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36801598

RESUMO

PURPOSE: COVID-19 associated pulmonary aspergillosis (CAPA) is associated with increased morbidity and mortality in ICU patients. We investigated the incidence of, risk factors for and potential benefit of a pre-emptive screening strategy for CAPA in ICUs in the Netherlands/Belgium during immunosuppressive COVID-19 treatment. MATERIALS AND METHODS: A retrospective, observational, multicentre study was performed from September 2020-April 2021 including patients admitted to the ICU who had undergone diagnostics for CAPA. Patients were classified based on 2020 ECMM/ISHAM consensus criteria. RESULTS: CAPA was diagnosed in 295/1977 (14.9%) patients. Corticosteroids were administered to 97.1% of patients and interleukin-6 inhibitors (anti-IL-6) to 23.5%. EORTC/MSGERC host factors or treatment with anti-IL-6 with or without corticosteroids were not risk factors for CAPA. Ninety-day mortality was 65.3% (145/222) in patients with CAPA compared to 53.7% (176/328) without CAPA (p = 0.008). Median time from ICU admission to CAPA diagnosis was 12 days. Pre-emptive screening for CAPA was not associated with earlier diagnosis or reduced mortality compared to a reactive diagnostic strategy. CONCLUSIONS: CAPA is an indicator of a protracted course of a COVID-19 infection. No benefit of pre-emptive screening was observed, but prospective studies comparing pre-defined strategies would be required to confirm this observation.


Assuntos
COVID-19 , Aspergilose Pulmonar , Humanos , Incidência , Tratamento Farmacológico da COVID-19 , Estudos Prospectivos , Estudos Retrospectivos
17.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768634

RESUMO

Trained immunity is the process of long-term functional reprogramming (a de facto innate immune memory) of innate immune cells such as monocytes and macrophages after an exposure to pathogens, vaccines, or their ligands. The induction of trained immunity is mediated through epigenetic and metabolic mechanisms. Apart from exogenous stimuli, trained immunity can be induced by endogenous compounds such as oxidized LDL, urate, fumarate, but also cytokines including IL-1α and IL-1ß. Here, we show that also recombinant IL-36γ, a pro-inflammatory cytokine of the IL-1-family, is able to induce trained immunity in primary human monocytes, demonstrated by higher cytokine responses and an increase in cellular metabolic pathways both regulated by epigenetic histone modifications. These effects could be inhibited by the IL-36 receptor antagonist as well as by IL-38, an anti-inflammatory cytokine of the IL-1 family which shares its main receptor with IL-36 (IL-1R6). Further, we demonstrated that trained immunity induced by IL-36γ is mediated by NF-κB and mTOR signaling. The inhibitory effect of IL-38 on IL-36γ-induced trained immunity was confirmed in experiments using bone marrow of IL-38KO and WT mice. These results indicate that exposure to IL-36γ results in long-term pro-inflammatory changes in monocytes which can be inhibited by IL-38. Recombinant IL-38 could therefore potentially be used as a therapeutic intervention for diseases characterized by exacerbated trained immunity.


Assuntos
Imunidade Inata , Imunidade Treinada , Humanos , Animais , Camundongos , Interleucinas/farmacologia , Interleucinas/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo
18.
Clin Obes ; 13(2): e12568, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36426776

RESUMO

Obesity is recognized as a risk factor for adverse outcome in COVID-19, but the molecular mechanisms underlying this relationship remain unknown. Adipose tissue functions as an endocrine organ by secreting multiple pro-inflammatory and anti-inflammatory factors, known as adipocytokines, which could be involved in COVID-19 severity. We explored the role of adipocytokines in COVID-19 and its association with BMI, clinical outcome, and inflammation. This is an observational study in 195 hospitalized COVID-19 patients. Serial plasma concentrations of the adipocytokines leptin, adiponectin, resistin, and various inflammatory cytokines were assessed. Adipocytokines were compared between patients with normal weight (BMI: 18.5-24.9 kg/m2 ), overweight (BMI: 25.0-29.9 kg/m2 ), and obesity (BMI ≥ 30 kg/m2 ), between patients admitted to the ICU and to non-ICU clinical wards, and between survivors and non-survivors. Patients with overweight and obesity displayed higher leptin concentrations and lower adiponectin concentrations throughout hospital admission (p < .001), whereas resistin concentrations were not different from patients with normal weight (p = .12). Resistin concentrations correlated with inflammatory markers and were persistently higher in ICU patients and non-survivors compared to non-ICU patients and survivors, respectively (both p < .001), whereas no such relationships were found for the other adipocytokines. In conclusion, leptin and adiponectin are associated with BMI, but not with clinical outcomes and inflammation in COVID-19 patients. In contrast, resistin is not associated with BMI, but high concentrations are associated with worse clinical outcomes and more pronounced inflammation. Therefore, it is unlikely that BMI-related adipocytokines or differences in the inflammatory response underlie obesity as a risk factor for severe COVID-19.


Assuntos
Adipocinas , COVID-19 , Humanos , Leptina , Resistina , Adiponectina , Índice de Massa Corporal , Sobrepeso , Países Baixos , Obesidade , Inflamação
19.
Microbiol Spectr ; 11(1): e0225622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475892

RESUMO

The reprogramming of cellular metabolism of immune cells is an essential process in the regulation of antifungal immune responses. In particular, glucose metabolism has been shown to be required for protective immunity against infection with Aspergillus fumigatus. However, given the intricate cross talk between multiple metabolic networks and signals, it is likely that cellular metabolic pathways other than glycolysis are also relevant during fungal infection. In this study, we demonstrate that glutamine metabolism is required for the activation of macrophage effector functions against A. fumigatus. Glutamine metabolism was found to be upregulated early after fungal infection and glutamine depletion or the pharmacological inhibition of enzymes involved in its metabolism impaired phagocytosis and the production of both proinflammatory and T-cell-derived cytokines. In an in vivo model, inhibition of glutaminase increased susceptibility to experimental aspergillosis, as revealed by the increased fungal burden and inflammatory pathology, and the defective cytokine production in the lungs. Moreover, genetic variants in glutamine metabolism genes were found to regulate cytokine production in response to A. fumigatus stimulation. Taken together, our results demonstrate that glutamine metabolism represents an important component of the immunometabolic response of macrophages against A. fumigatus both in vitro and in vivo. IMPORTANCE The fungal pathogen Aspergillus fumigatus can cause severe and life-threatening forms of infection in immunocompromised patients. The reprogramming of cellular metabolism is essential for innate immune cells to mount effective antifungal responses. In this study, we report the pivotal contribution of glutaminolysis to the host defense against A. fumigatus. Glutamine metabolism was essential both in vitro as well as in in vivo models of infection, and genetic variants in human glutamine metabolism genes regulated cytokine production in response to fungal stimulation. This work highlights the relevance of glutaminolysis to the pathogenesis of aspergillosis and supports a role for interindividual genetic variation influencing glutamine metabolism in susceptibility to infection.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Glutamina , Antifúngicos , Aspergilose/microbiologia , Citocinas/metabolismo
20.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203686

RESUMO

Anticytokine autoantibodies (ACAAs) are a fascinating group of antibodies that have gained more and more attention in the field of autoimmunity and secondary immunodeficiencies over the years. Some of these antibodies are characterized by their ability to target and neutralize specific cytokines. ACAAs can play a role in the susceptibility to several infectious diseases, and their infectious manifestations depending on which specific immunological pathway is affected. In this review, we will give an outline per infection in which ACAAs might play a role and whether additional immunomodulatory treatment next to antimicrobial treatment can be considered. Finally, we describe the areas for future research on ACAAs.


Assuntos
Autoanticorpos , Doenças Transmissíveis , Humanos , Autoimunidade , Citocinas , Imunomodulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...